Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4(+)CD25(+)FOXP3(+) T regulatory cell subpopulations.

نویسندگان

  • Cristiano Scottà
  • Marianna Esposito
  • Henrieta Fazekasova
  • Giorgia Fanelli
  • Francis C Edozie
  • Niwa Ali
  • Fang Xiao
  • Mark Peakman
  • Behdad Afzali
  • Pervinder Sagoo
  • Robert I Lechler
  • Giovanna Lombardi
چکیده

Adoptive transfer of ex vivo expanded CD4(+)CD25(+)FOXP3(+) regulatory T cells is a successful therapy for autoimmune diseases and transplant rejection in experimental models. In man, equivalent manipulations in bone marrow transplant recipients appear safe, but questions regarding the stability of the transferred regulatory T cells during inflammation remain unresolved. In this study, protocols for the expansion of clinically useful numbers of functionally suppressive and stable human regulatory T cells were investigated. Regulatory T cells were expanded in vitro with rapamycin and/or all-trans retinoic acid and then characterized under inflammatory conditions in vitro and in vivo in a humanized mouse model of graft-versus-host disease. Addition of rapamycin to regulatory T-cell cultures confirms the generation of high numbers of suppressive regulatory T cells. Their stability was demonstrated in vitro and substantiated in vivo. In contrast, all-trans retinoic acid treatment generates regulatory T cells that retain the capacity to secrete IL-17. However, combined use of rapamycin and all-trans retinoic acid abolishes IL-17 production and confers a specific chemokine receptor homing profile upon regulatory T cells. The use of purified regulatory T-cell subpopulations provided direct evidence that rapamycin can confer an early selective advantage to CD45RA(+) regulatory T cells, while all-trans retinoic acid favors CD45RA(-) regulatory T-cell subset. Expansion of regulatory T cells using rapamycin and all-trans retinoic acid drug combinations provides a new and refined approach for large-scale generation of functionally potent and phenotypically stable human regulatory T cells, rendering them safe for clinical use in settings associated with inflammation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of T Regulatory Subsets from Naïve CD4+ T Cells after Exposure to Breast Cancer Adipose Derived Stem Cells

Background: Adipose derived stem cells (ASCs) provoke the accumulation and expansion of regulatory T cells, leading to the modulation of immune responses in tumor microenvironment. Objective: To assess the effect of tumoral ASCs on the trend of regulatory T cells differentiation. Methods: Peripheral blood naïve CD4+ T cells were co-cultured with ASCs derived from breast cancer or normal breast ...

متن کامل

Altered Suppressor Function of Regulatory T Cells in Type 1 Diabetes

Background: Type 1 diabetes (T1D) is a T cell mediated autoimmune disease targeting the insulin-producing β cells within pancreatic islets. Autoimmune diseases may develop as a consequence of altered balance between regulatory (Tregs) and autoreactive T cells. Objectives: To evaluate Treg cells frequency and suppressive function in the peripheral blood of newly diagnosed T1D patients in compari...

متن کامل

De novo generation and enhanced suppression of human CD4+CD25+ regulatory T cells by retinoic acid.

Therapies based on CD4(+)CD25(+)FOXP3(+) T regulatory (Treg) cells offer promise for the restoration of tolerance in many immune-mediated disorders. However, it has been proven difficult to obtain large numbers of Treg cells with potent and stable suppressive ability from adult human peripheral blood because of the lack of specific markers for Treg isolation/characterization, compromised functi...

متن کامل

Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients.

CD4+CD25+FOXP3+ T regulatory cells (Tregs) are pivotal for the induction and maintenance of peripheral tolerance in both mice and humans. Rapamycin has been shown to promote tolerance in experimental models and to favor CD4+CD25+ Treg-dependent suppression. We recently reported that rapamycin allows in vitro expansion of murine CD4+CD25+FoxP3+ Tregs, which preserve their suppressive function. I...

متن کامل

Numerical status of CD4+CD25+FoxP3+ and CD8+CD28- regulatory T cells in multiple sclerosis

Objective(s): Regulatory T cells, including CD4+CD25+Fox3+ and CD8+CD28- cells play an important role in regulating the balance between immunity and tolerance. Since multiple sclerosis is an inflammatory autoimmune disease, regulatory T cells are considered to be involved in its pathogenesis. In this study, we investigated the circulatory numbers of the two mentioned types of regulatory T cells...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Haematologica

دوره 98 8  شماره 

صفحات  -

تاریخ انتشار 2013